Modeling water uptake by a root system growing in a fixed soil volume
نویسندگان
چکیده
The water uptake by roots of plants is examined for an ideal situation, with an approximation that resembles plants growing in pots, meaning that the total soil volume is fixed. We propose a coupled water uptake-root growth model. A one-dimensional model for water flux and water uptake by a root system growing uniformly distributed in the soil is presented, and the Van Genuchten model for the transport of water in soil is used. The governing equations are represented by a moving boundary model for which the root length, as a function of time, is prescribed. The solution of the model is obtained by front-fixing and finite element methods. Model predictions for water uptake by a same plant growing in loam, silt and clay soils are obtained and compared. A sensitivity analysis to determine relative effects on water uptake when system parameters are changed is also presented and shows that the model and numerical method proposed are more sensitive to the root growth rate than to the rest of the parameters. This sensitivity decreases along time, reaching its maximum at thirty days. A comparison of this model with a fixed boundary model with and without root growth is also made. The results show qualitative differences from the beginning of the simulations, and quantitative differences after ten days of simulations.
منابع مشابه
Can diversity in root architecture explain plant water use efficiency? A modeling study
Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture ...
متن کاملRoot-System Development and Water-Extraction Model Considering Hydrotropism
certain conditions. However, because root-system development is not considered in these water-extraction A two-dimensional model that combines root-system development models, the root length per unit soil volume should be and water extraction by roots is proposed to simulate the dynamic interaction between root growth and soil-water flow. Both of hydrotrogiven a priori as a function of soil dep...
متن کاملEvaluation of macroscopic water extraction model for salinity and water stress in saffron yield production
Water scarcity and salinity are important limitations for saffron (Crocus sativus L.) production in arid and semi-arid regions. The purpose of this research was to study the interaction effects of water salinity and deficit irrigation on the macroscopic water extraction model for saffron. The effect of salinity and water stress on root-water uptake coefficient was determined by additive and mul...
متن کاملEvapotranspiration and yield of okra as affected by partial root-zone furrow irrigation
Partial root-zone drying or partial root-zone irrigation is a newly proposed water saving technique which may improve water use efficiency and nutrient uptake by a crop without affecting its yield. A study was conducted to investigate the response of furrow-irrigated okra to partial root zone drying in relation to cropevapotranspiration (ETc), vegetative growth, yield, and nutrient use effi...
متن کاملModelling potassium uptake by wheat
A model has been used to simulate potassium (K) uptake by wheat in a pot culture experiment. Three soils from India, namely Alfisol, Inceptisol and Vertisol, were differentially K exhausted by Sudan grass (Surghum vulgare var. Sudanensis) for a period of 280 days and were used to simulate potassium uptake by wheat (Triticum aestivum) and also to predict the amounts of K released or fixed during...
متن کامل